上海谱闵工业自动化设备有限公司

主营产品: IFM易福门开关,IFM易福门编码器,IFM易福门传感器

8

联系电话

13795286773

您现在的位置: 上海谱闵工业自动化设备有限公司>>德国IFM易福门>>IFM易福门传感器>> OG5129易福门漫发射传感器OG5129*

意大利ATOS阿托斯

德国IFM易福门

德国HYDAC贺德克

美国PARKER派克

德国Balluff巴鲁夫

德国Berenstain伯恩斯坦

美国MOOG穆格

德国HAWE哈威

德国TRUCK图尔克

德国Siemens西门子

德国KRACHT克拉克

美国UE

美国Bentley本特利

德国PILZ皮尔兹

德国REXROTH力士乐

沃克

LAPP缆普

欧洲陌生品牌

美国陌生品牌

美国ASCO阿斯卡

德国KUBLER库伯勒

德国burkert

美国METRIX

意大利PIZZATO

德国SAMSON

美国SOR

美国TOPWORX

德国GRESSMANN

德国GSR

美国TESCOM

德国KNF

日本DAIKIN

安士能

ATOS

E+H倍加福

Aventics

HELMKE

公司信息

人:
王晶
话:
13795286773
机:
13795286773
真:
QQ:3130334465
址:
上海市浦东新区自由贸易试验区美盛路55号2幢726室(保周创新中心)
编:
化:
www.jinqiansijx.com
址:
www.jinqiansijx.com
铺:
/st396092/
给他留言
OG5129易福门漫发射传感器OG5129*
易福门漫发射传感器OG5129*
参考价 面议
具体成交价以合同协议为准
  • 型号 OG5129
  • 品牌 IFM/德国易福门
  • 厂商性质 经销商
  • 所在地 上海市

更新时间:2023-11-09 09:26:13浏览次数:697

联系我们时请说明是Ky开元集团上看到的信息,谢谢!

【简单介绍】
易福门漫发射传感器OG5129*
特别节省空间的设计,侧面发光
用于空间受限的情况
固定设定,可立刻做好使用准备
坚固的外壳,适用于严苛的工业环境
极长量程
【详细说明】

易福门漫发射传感器OG5129*

上海谱瑞特工业自动化设备有限公司在欧美有多个分子公司,整个集团在行业内经营十几年专门致力于从事上*工业产品的进出口业务。在公司全体员工的努力及广大客户和业界同仁支持之下,公司业务迅速拓展,产品已经广泛应用于大中型电厂、冶金、石化、环保、纺织、铁路、船舶、医药机械、包装机械、纺织机械、食品机械、航天航空、楼宇控制等现代工业自动化领域。

易福门电子(上海)有限公司成立于2005年1月,总部位于上海张江技术产业开发区。易福门品牌创立之初是激情驱使着创始人为之改善。开发具有品质和可靠的传感器,并提供的客户服务。正因为有着这样的愿景和认识,迄今为止的易福门“品质”超越 1969 年10 月 ifm开始推出的实体产品。

质量和服务

质量对我们而言是一个超越实际产品的词。 我们的所有流程均专注于客户服务和产品质量。 我们亲自为客户提供支持 - 无论是在世界的哪个位置,使用哪种语言。 如果需要快速响应,我们的专家会通过免费服务提供的支持。 我们利用客户反馈来持续改进产品质量。 在特殊的测试程序中,我们会让传感器承受远超过其期限的负荷,以确保它们在客户流程中保持提供我们承诺的性能。 此外,每件产品在出厂前均会接受终检查。 这是我们所重视的承诺,因此我们为每件目录产品保修 5 年。

德国制造

我们 70 % 的产品均是在德国开发和制造。 我们深感与业务据点德国紧密相连。 但我们已进入想要进一步深化我们承诺“与您紧密联系”的愿景时期。 凭借位于美国、新加坡、波兰和罗马尼亚的制造和开发据点,我们将遵循自己的原则,并能以*的专业能力,快速、灵活且专业地响应不同市场的要求。 无论是涉及到我们员工的工作条件、环境保护,还是开发与生产的高质量标准,我们的所有制造和开发据点均按相同的德国高质量标准设立。

易福门漫发射传感器OG5129主要属性:

特别节省空间的设计,侧面发光

用于空间受限的情况

固定设定,可立刻做好使用准备

坚固的外壳,适用于严苛的工业环境

极长量程

技术参数:

应用

功能原理 对射式传感器

电气数据

工作电压 [V] 10...30 DC; (符合cULus - Class 2标准)

电流损耗 [mA] < 19

防护等级 II

反相保护 是

光线种类 红光

波长 [nm] 660

监控范围

发射器/接收器 发射装置

检测距离 [m] < 9

检测距离可设 否

光斑直径大值 [mm] 3000

光点尺寸参考 在大的检测距离

工作条件

环境温度 [°C] -25...60

外壳防护等级 IP 68

认证/测试

EMC电磁兼容

EN 60947-5-2

EN 55011 等级B

MTTF [年] 1714

机械技术数据

重量 [g] 58

外壳 螺纹结构

尺寸 [mm] M18 x 1 / L = 59.3

螺纹代号 M18 x 1

原材料 特种钢; ABS

透镜材料

PMMA

显示器/操作件

显示

操作 1 x LED, 绿色

附件

附件(附送)

螺母: 2 x

锁定垫圈: 2 x

注释

包装单位 1 件数

电气连接

接口 接插件: 1 x M12

易福门传感器主要型号:

OY953S/OY411S/OY443S/OY806S/OY282S

OY952S/OY412S/OY442S/OY807S/OY270S

OY951S/OY413S/OY441S/OY808S/OY269S

OY903S/OY421S/OY440S/OY815S/OY268S

OY902S/OY423S/OY439S/OY407S/OY267S

OY901S/OY115S/OY438S/OY405S/OY266S

OY952S/OY808S/OY442S/OY413S/OY270S

OY951S/OY807S/OY441S/OY412S/OY269S

OY903S/OY806S/OY440S/OY411S/OY268S

OY902S/OY805S/OY439S/OY407S/OY267S

OY901S/OY804S/OY438S/OY405S/OY266S

OY829S/OY003S/OY437S/OY403S/OY265S

OY827S/OY450S/OY435S/OY289S/OY263S

OY826S/OY449S/OY434S/OY288S/OY262S

OY825S/OY448S/OY433S/OY287S/OY261S

OY819S/OY447S/OY432S/OY286S/OY250S

OY818S/OY446S/OY431S/OY285S/OY249S

OY817S/OY445S/OY423S/OY284S/OY248S

传感器的主要属性:

接触式

接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。

温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。

一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在*、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。

非接触式

它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。

较常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。

辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,终可得到被测表面的真实温度。较为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。

至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。

非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温 逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。

菲涅尔滤光透镜,热释电红外传感器(PIR)和匹配低噪放大器。

菲涅尔透镜有两个作用:一是聚焦作用,即将热释红外信号折射在PIR上:二是将探测区内分为若干个明区和暗区,使进入探测区的移动物体(人)能以温度变化的形式在PIR上产生变化的热释红外信号。一般还会匹配低噪放大器,当探测器上的环境温度上升,尤其是接近人体正常体温(37℃)时,传感器的灵敏度下降,经由它对增益进行补偿,增加其灵敏度。输出信号可用来驱动电子开关,实现LED照明电路的开关控制。这是一款E27标准螺口灯头的灯具,它的电源适用范围是 AC180V-250V (50/60HZ), 红外传感器检测范围大约在3M—15M,它的标准产品 IFS-BULB 3W灯具达80 LM ,5W灯具达140 LM 。在LED光源模块的中央部分嵌入红外线传感器。一旦红外传感器检测到人的体温,LED电灯泡将会在50秒内自动开启与关闭。适用于任何一种室内应用,如走廊、储藏室、楼梯和大厅入口处。

霍尔式曲轴与凸轮轴位置传感器

(1)霍尔式传感器的结构与工作原理

霍尔式曲轴与凸轮轴位置传感器及其他形式的霍尔式传感器都是根据霍尔效应制成的传感器。

1)霍尔效应:霍尔效应(Hall Effect)是美国约翰霍普金斯大学物理学家霍尔博士(Dr.E.H.Hall)于1879年首先发现的。他发现把一个通有电流I的长方体形白金导体垂直于磁力线放入磁感应强度为B的磁场中时(见图2-27),在白金导体的两个横向侧面上就会产生一个垂直于电流方向和磁场方向的电压UH,当取消磁场时,电压立即消失。该电压后来称为霍尔电压,UH与通过白金导体的电流I和磁感应强度B成正比,即(见下页)

利用霍尔效应制成的元件称为霍尔元件,利用霍尔元件制成的传感器称为霍尔式传感器。利用霍尔效应不仅可以通过接通和切断磁场来检测电压,而且可以检测导线中流过的电流,因为导线周围的磁场强弱与流过导线的电流成正比关系。20世纪80年代以来,汽车上应用的霍尔式传感器与日剧增,主要原因在于霍尔式传感器有两个突出优点:一是输出电压信号近似于方波信号;二是输出电压高低与被测物体的转速无关。霍尔式传感器与磁感应式传感器不同的是需要外加电源。

2)霍尔式传感器基本结构:霍尔式传感器主要由触发叶轮、霍尔集成电路、导磁钢片(磁轭)与磁铁等组成。触发叶轮安装在转子轴上,叶轮上制有叶片(在霍尔式点火系统中,叶片数与发动机气缸数相等)。当触发叶轮随转子轴一同转动时,叶片便在霍尔集成电路与磁铁之间转动。霍尔集成电路由霍尔元件、放大电路、稳压电路、温度补偿电路、信号变换电路和输出电路等组成。

3)霍尔式传感器工作原理:当传感器轴转动时,触发叶轮的叶片便从霍尔集成电路与磁铁之间的气隙中转过:当叶片离开气隙时,磁铁的磁通便经霍尔集成电路和导磁钢片构成回路,此时霍尔元件产生电压(UH=1.9~2.0V),霍尔集成电路输出级的晶体管导通,传感器输出的信号电压U0为低电平(实测表明:当电源电压Ucc=14.4V或5V时,信号电压U0=0.1~0.3 V)。

当叶片进入气隙时,霍尔集成电路中的磁场被叶片旁路,霍尔电压UH为零,集成电路输出级的晶体管截止,传感器输出的信号电压U0为高电平(实测表明:当电源电压Ucc=14.4V时,信号电压U0=9.8 V;当电源电压Ucc=5V时,信号电压U0=4.8 V)。

(2)捷达、桑塔纳轿车霍尔式凸轮轴位置传感器

1)结构特点:捷达AT和GTx、桑塔纳2000GSi型轿车采用的霍尔式凸轮轴位置传感器安装在发动机进气凸轮轴的一端,结构如图2-28所示。它主要由霍尔信号发生器和信号转子组成。信号转子又称为触发叶轮,安装在进气凸轮轴上,.用定位螺栓和座圈定位固定。信号转子的隔板又称为叶片,在隔板上制有一个窗口,窗口对应产生的信号为低电平信号,隔板(叶片)对应产生的信号为高电平信号。霍尔式信号发生器主要由霍尔集成电路、磁铁和导磁钢片等组成。霍尔元件用硅半导体材料制成,与磁铁之间留有0.2~0.4mm的间隙,当信号转子随进气凸轮轴一同转动时,隔板和窗口便从霍尔集成电路与磁铁之间的气隙中转过。

该传感器接线插座上有三个引线端子,端子1为传感器电源正子,与控制单元端子62连接:端子2为传感器信号输出端子,与控制单元端子76连接:端子3为传感器电源负子,与控制单元端子67连接。

2)工作情况:由霍尔式传感器工作原理可知,当隔板(叶片)进入气隙(即在气隙内)时,霍尔元件不产生电压,传感器输出高电平(5V)信号;当隔板(叶片)离开气隙(即窗口进入气隙)时,霍尔元件产生电压。传感器输出低电平信号(0.1V)。凸轮轴位置传感器输出的信号电压与曲轴位置传感器输出的信号电压之间的关系如图2-29所示。发动机曲轴每转两圈(720。),霍尔式传感器信号转子就转过一圈(360。),对应产生一个低电平信号和一个高电平信号,其中低电平信号对应于气缸1压缩上止点前一定角度。

发动机工作时,磁感应式曲轴位置传感器(CPS)和霍尔式凸轮轴位置传感器(CIS)产生的信号电压不断输入电子控制单元(ECU)。当ECU同时接收到曲轴位置传感器大齿缺对应的低电平(15。)信号和凸轮轴位置传感器窗口对应的低电平信号时,便可识别出此时为气缸1活塞处于压缩行程、气缸4活塞处于排气行程,并根据曲轴位置传感器小齿缺对应输出的信号控制点火提前角。电子控制单元识别出气缸1压缩上止点位置后,便可进行顺序喷油控制和各缸点火时刻控制。

如果发动机产生了爆燃,电子控制单元还能根据爆燃传感器输入的信号判别出是哪一个缸产生了爆燃,从而减小点火提前角,以便消除爆燃。

差动霍尔式曲轴位置传感器

切诺基(Cherokee)吉普车与红旗CA7220E型轿车采用了差动霍尔式曲轴位置传感器,其凸轮轴位置传感器均为普通霍尔式传感器。

(1)差动霍尔式传感器结构特点

差动霍尔式传感器又称为双霍尔式传感器,其结构与磁感应式传感器相似,如图2-30a所示。它由带凸齿的信号转子和霍尔信号发生器组成。差动霍尔式传感器的工作原理与普通霍尔式传感器相同。根据霍尔式传感器的工作原理。当发动机飞轮上的齿缺与凸齿转过差动霍尔电路的两个探头时,齿缺或凸齿与霍尔探头之间的气隙就会发生变化,磁通量随之变化,在传感器的霍尔元件中就会产生交变电压信号,如图2-30b所示。其输出电压由两个霍尔信号电压叠加而成。因为输出信号为叠加信号,所以转子凸齿与信号发生器之间的气隙可以增大到(1±0.5)mm(普通霍尔式传感器仅为0.2~0.4mm),因而便可将信号转子制成像磁感应式传感器转子一样的齿盘式结构,其突出优点是信号转子便于安装。在汽车上,一般将凸齿转子装在发动机曲轴上或将发动机飞轮作为传感子。

器的信号转

(2)切诺基吉普车差动霍尔式曲轴位置传感器

1)结构特点:切诺基吉普车2.5L(四缸)、4.0L(六缸)电子控制燃油喷射式发动机采用了差动霍尔电路的霍尔式曲轴位置传感器。它安装在变速器壳体上。该传感器向ECu提供发动机转速与曲轴位置(转角)信号,作为计算喷油时刻和点火时刻的重要依据之一。

2.5L四缸电子控制发动机的飞轮上制有8个齿缺,如图2-31a所示。8个齿缺分成两组,每4个齿缺为一组,两组之间相隔角度为180。,同一组中相邻两个齿缺之间间隔角度为20。。4.0L六缸电子控制发动机的飞轮上制有12个齿缺,如图2.3lb所示。12个齿缺分成三组,每4个齿缺为一组,相邻两组之间相隔角度为120。,同一组中相邻两个齿缺之间间隔角度也为20。

2)工作情况:飞轮上的每一组齿缺转过霍尔探头时,传感器就会产生一组共4个脉冲信号。其中,四缸发动机每转一圈产生两组共8个脉冲信号;六缸发动机每转一圈产生三组共12个脉冲信号。

对于四缸发动机,ECU每接收到8个信号,即可知道曲轴旋转了一转,再根据接收8个信号所占用的时间,就可计算出曲轴转速。对于六缸发动机,ECU每接收到12个信号,即可知道曲轴旋转了一转,再根据接收12个信号所占用的时间,就可计算出曲轴转速。

电子控制单元控制喷油和点火时,都有一定的提前角,因此需要知道活塞接近上止点的位置。切诺基吉普车在每组信号输入ECU时,可以知道有两个气缸的活塞即将到达上止点位置。 例如,在四缸发动机控制系统中,利用一组信号,ECU可知气缸1、4活塞接近上止点;利用另一组信号可知气缸2、3活塞接近上止点。在六缸发动机控制系统中。利用一组信号,可知气缸1与6、2与5、3与4活塞接近上止点。由于第4个齿缺产生的脉冲下降沿对应于压缩上止点前4。(BTDC4。),因此第1个齿缺产生的脉冲信号下降沿对应于压缩上止点前64。(BT-DC64。),如图2-32所示。当气缸1、4对应的第1个脉冲下降沿到来时,ECU即可知道此时气缸1、4活塞位于压缩上止点前64。(BTDC64。),从而便可控制喷油提前角和点火提前角。但是,仅有曲轴转角信号,ECU还不能确定是哪一个缸位于压缩行程,哪一个缸位于排气行程,为此还需要一个气缸判别信号(即需要一只凸轮轴位置传感器)。

(3)切诺基吉普车霍尔式凸轮轴位置传感器

1)结构特点:切诺基吉普车发动机控制系统的气缸判别信号由霍尔式凸轮轴位置传感器提供,该传感器又称为同步信号传感器,安装在分电器内,主要由脉冲环(信号转子)、霍尔信号发生器组成。

脉冲环上制有凸起的叶片,占180。分电器轴转角(相当于360。曲轴转角)。没有叶片的部分也占180。分电器轴转角(360。曲轴转角)。脉冲环安装在分电器轴上,随分电器轴一同转动。

2)工作情况:当脉冲环上的叶片进入信号发生器时,传感器输出高电平(5V);当脉冲环上的叶片离开信号发生器时,传感器输出低电平(0V)。分电器轴转一圈,传感器输出一个高电平和一个低电平,高、低电平各占180。分电器轴转角(分别相当于360。曲轴转角)。同步信号的波形如图2-32所示。

当脉冲环的叶片前沿进入信号发生器、传感器输出高电平(5V)时,对于四缸发动机,表示气缸1、4活塞即将到达上止点,其中气缸1活塞位于压缩行程,气缸4活塞位于排气行程;对于六缸发动机,表示气缸3、4活塞即将到达上止点,其中气缸4活塞位于压缩行程,气缸3活塞位于排气行程。

当脉冲环的叶片后沿进入信号发生器、传感器输出低电平(0V)时,对于四缸发动机,表示即将到达上止点的仍然是气缸1、4活塞,其中气缸4活塞位于压缩行程,气缸1活塞位于排气行程;对于六缸发动机,表示气缸3活塞位于压缩行程,气缸4活塞位于排气行程。

利用凸轮轴位置传感器判别出是哪一个气缸即将到达排气上止点之后,ECU根据曲轴位置传感器信号,即可控制喷油提前角和点火提前角。

设某一时刻的喷油提前角为上止点前64。(BTI)C64。),当凸轮轴位置传感器脉冲环的叶片进入信号发生器、传感器输出高电平(5V)时,ECU判定四缸发动机的气缸4活塞位于排气行程(六缸发动机的气缸3活塞位于排气行程),此时ECU在接收到曲轴位置传感器(CPS)*个脉冲信号的下降沿(BTDC64。)时,向喷油器发出喷油信号,从而实现提前64。喷油。在凸轮轴位置传感器输出高电平(5V))时,ECU还判定四缸发动机的气缸1活塞(六缸发动机气缸4活塞)位于压缩行程,此时ECU根据曲轴位置传感器CPS信号和点火提前角计算值,在活塞运行到上止点前点火提前角度时,向点火控制器发出点火指令,控制火花塞点火,实现点火提前。

利用凸轮轴位置传感器对两个气缸的位置判定作为参考点,即可按照四缸发动机1—3—4—2(六缸发动机l一5—3—6—2—4)的工作顺序,对各个气缸进行提前喷油与提前点火控制。

(4)红旗CA7720E型轿车差动霍尔式曲轴位置传感器

红旗CA7220E型轿车CA488.3型发动机上装备的SIMOS4S3型电子控制燃油喷射系统采用的差动霍尔式曲轴位置传感器由信号转子与信号发生器组成。信号转子为齿盘式,安装在变速器壳体前端,它与捷达AT、GTX型轿车用磁感应式曲轴位置传感器转子相似,在其圆周上均匀间隔地制作有58个凸齿、 57个小齿缺和一个大齿缺。大齿缺输出基准信号,对应于发动机气缸1或气缸4压缩上止点前一定角度。大齿缺所占的弧度相当于两个凸齿和三个小齿缺所占的弧度。

因为信号转子随曲轴一同旋转,曲轴旋转一圈(360。),信号转子也旋转一圈(360。),所以信号转子圆周上的凸齿和齿缺所占的曲轴转角为 360。,每个凸齿和小齿缺所占的曲轴转角均为3。(58×3。+57×3。=345。),大齿缺所占的曲轴转角为15。(2×3。+3×3。= 15。),信号波形如图2-33a所示。

概括而言, 智能传感器的主要功能是:

(1) 具有自校零、 自标定、 自校正功能;

(2) 具有自动补偿功能;

(3) 能够自动采集数据, 并对数据进行预处理;

(4) 能够自动进行检验、 自选量程、 自寻故障;

(5) 具有数据存储、记忆与信息处理功能;

(6) 具有双向通讯、标准化数字输出或者符号输出功能;

(7) 具有判断、决策处理功能。

可实现的功能

智能传感器的功能是通过模拟人的感官和大脑的协调动作,结合长期以来测试技术的研究和实际经验而提出来的。是一个相对独立的智能单元,它的出现对原来硬件性能苛刻要求有所减轻,而靠软件帮助可以使传感器的性能大幅度提高。

1、信息存储和传输——随着全智能集散控制系统(SmartDistributedSystem)的飞速发展,对智能单元要求具备通信功能,用通信网络以数字形式进行双向通信,这也是智能传感器关键标志之一。智能传感器通过测试数据传输或接收指令来实现各项功能。如增益的设置、补偿参数的设置、内检参数设置、测试数据输出等。

2、自补偿和计算功能——多年来从事传感器研制的工程技术人员一直为传感器的温度漂移和输出非线性作大量的补偿工作,但都没有从根本上解决问题。而智能传感器的自补偿和计算功能为传感器的温度漂移和非线性补偿开辟了新的道路。这样,放宽传感器加工精密度要求,只要能保证传感器的重复性好,利用微处理器对测试的信号通过软件计算,采用多次拟合和差值计算方法对漂移和非线性进行补偿,从而能获得较精确的测量结果压力传感器。

3、自检、自校、自诊断功能——普通传感器需要定期检验和标定,以保证它在正常使用时足够的准确度,这些工作一般要求将传感器从使用现场拆卸送到实验室或检验部门进行。对于在线测量传感器出现异常则不能及时诊断。采用智能传感器情况则大有改观,首先自诊断功能在电源接通时进行自检,诊断测试以确定组件有*。其次根据使用时间可以在线进行校正,微处理器利用存在EPROM内的计量特性数据进行对比校对。

4、复合敏感功能——我们观察周围的自然现象,常见的信号有声、光、电、热、力、化学等。敏感元件测量一般通过两种方式:直接和间接的测量。而智能传感器具有复合功能,能够同时测量多种物理量和化学量,给出能够较全面反映物质运动规律的信息。如美国加利弗尼亚大学研制的复合液体传感器,可同时测量介质的温度、流速、压力和密度。复合力学传感器,可同时测量物体某一点的三维振动加速度(加速度传感器)、速度(速度传感器)、位移(位移传感器),等等。

5、智能传感器的集成化----由于大规模集成电路的发展使得传感器与相应的电路都集成到同一芯片上,而这种具有某些智能功能的传感器叫作集成智能传感器集成智能传感器的功能有三个方面的优点:较高信噪比:传感器的弱信号先经集成电路信号放大后再远距离传送,就可大大改进信噪比。改善性能:由于传感器与电路集成于同一芯片上,对于传感器的零漂、温漂和零位可以通过自校单元定期自动校准,又可以采用适当的反馈方式改善传感器的频响。信号规一化:传感器的模拟信号通过程控放大器进行规一化,又通过模数转换成数字信号,微处理器按数字传输的几种形式进行数字规一化,如串行、并行、频率、相位和脉冲等。

霍尔式传感器

⒈霍尔效应

半导体或金属薄片置于磁场中,当有电流(与磁场垂直的薄片平面方向)流过时,在垂直于磁场和电流的方向上产生电动势,这种现象称为霍尔效应。

⒉霍尔元件

常用的霍尔材料锗(Ge)、硅(Si)、锑化铟(InSb)、砷化铟(InAs)等。N型锗容易加工制造,霍尔系数、温度性能、线性度较好;P型硅的线性度好,霍尔系数、温度性能同N型锗,但电子迁移率较低,带负载能力较差,通常不作单个霍尔元件。

三)压电式传感器

⒈压电效应

对某些电介质沿着一定方向加力而使其变形时,在一定表面上产生电荷,当外力撤除后,又恢复到不带电状态,这种现象称为正压电效应。在电介质的极化方向施加电场,电介质会在一定方向上产生机械变形或机械压力,当外电场去除后,变形或应力随之消失,此现象称为逆压电效应。

⒉压电元件

压电式传感器是物性型的、发电式传感器。常用的压电材料有石英晶体(SiO2)和人工合成的压电陶瓷。

压电陶瓷的压电常数是石英晶体的几倍,灵敏度较高。

四)光电式传感器

⒈光电效应

当光线照射物体时,可看作一串具有能量E的光子轰击物体,如果光子的能量足够大,物质内部电子吸收光子能量后,摆脱内部力的约束,发生相应电效应的物理现象,称为光电效应。

1)在光线作用下,电子逸出物体表面的现象,称为外光电效应,如光电管、光电倍增管等。

2)在光线作用下,物体的电阻率改变的现象,称为内光电效应,如光敏电阻、光敏二极管、光敏三极管、光敏晶闸管等。

3)在光线作用下,物体产生一定方向电动势的现象,称为光生伏特现象,如光电池(属于对感光面入射光点位置敏感的器件)等。

⒉光敏电阻

光敏电阻受到光线照射时,电子迁移,产生电子—空穴对,使电阻率变小。光照越强,阻值越低。入射光线消失,电子—空穴对恢复,电阻值逐渐恢复原值。

⒊光敏管

光敏管(光敏二极管、光敏三极管、光敏晶闸管等)属于半导体器件。

⒋电致发光

固体发光材料在电场激发下产生的发光现象称为电致发光。电致发光是将电能直接转换成光能的过程。发光二极管(LED)是以特殊材料掺杂制成的半导体电致发光器件。当其PN结正向偏置时,由于电子—空穴复合时产生过剩能量,该能量以光子形式放出而发光。

我们上海谱瑞特工业自动化设备有限公司就是对待每一位顾客都是始终保证这良好的耐心,我们从事机械设备自动化的进出口贸易已经超过了十年的时候在过去的十年中我们对待每一位顾客都是保持着我们十二分的热情去对待的因为我们相信努力终究会有回报,我们的付出客户都看的到。现在我们公司在海外也有自己的分公司可以更好的为客户服务!

易福门漫发射传感器OG5129*



产品对比 产品对比 二维码 在线交流

扫一扫访问手机商铺

对比框

在线留言